Response Surface Methodology Modelling of Diazinon Photodegradation Using Tio2-zno

نویسندگان

  • BENTON OTIENO
  • SETH APOLLO
  • BOBBY NAIDOO
  • AOYI OCHIENG
چکیده

A semiconductor composite photocatalyst, TiO2-ZnO, was synthesized by precipitating ZnO on the surface of commercial TiO2 (aeroxide P25), and used for the photodegradation of diazinon in a 12 W UVC batch photoreactor. Scanning electron microscopy (SEM) investigation revealed a plausible hybridization of TiO2 and ZnO in the composite. Ultraviolet visible (UV-Vis) spectroscopy confirmed a red shift in the composite resulting in lower energy requirement. Central composite design (CCD) was used to evaluate and optimize the effect of operational parameters such as initial pH, initial concentration and composite composition by ZnO, on diazinon removal. Analysis of variance (ANOVA), with high coefficients of correlation (R2 = 0.9946 and adjusted R2 = 0.9877), confirmed a good agreement between experimental and predicted values. Response surface methodology (RSM) was used to obtain 3D surface plots, which revealed that all the operational parameters investigated are significant in the degradation process. For the optimized conditions, maximum diazinon removal obtained was 82%, at initial pH and concentration of 5.28 and 10 ppm, respectively, and ZnO composite composition by weight of 25%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study

ZnO nanocrystals with mean diameter size 14 nm have been prepared by precipitation method, and examined as photocatalyst for the UV-induced degradation of insecticide diazinon as deputy of organic pollutant in aqueous solution. The effects of various parameters, such as illumination time, the amount of photocatalyst, initial pH values and initial concentration of insecticide on the photocatalyt...

متن کامل

Optimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method

The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...

متن کامل

Optimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method

The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...

متن کامل

Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation

ZnO and TiO2 nanoparticles wereimpregnated with merbromin dye and used as modified photocatalysts for degradation of phenol. Dye-modified ZnO and TiO2 showed significantly higher photocatalytic activity than neat ZnO and TiO2 under visible light illumination. Moreover, the prepared dye-modified ZnO showed superior photocatalytic efficiency in degrad...

متن کامل

Effect of Three Operating Variables on Degradation of Direct Blue 199 by TiO2 Immobilized into a Polymer surface: Response Surface Methodology

This work aims to study the photodegradation of Direct Blue 199 dye. The investigation was performed using titanium dioxide-based films immobilized on a polymethyl methacrylate (PMMA) polymer, by a promising low coast technique. The characterization of the films by X-ray diffractometry, fourier transform infrared spectroscopy, scanning electron microscopy, UV-Visible transmittance, and fluo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017